def setUp(self):
with self.test_session():
N = 4
M = 5
self.mu = tf.placeholder(settings.float_type, [M, N])
self.sqrt = tf.placeholder(settings.float_type, [M, N])
self.K = tf.placeholder(settings.float_type, [M, M])
self.rng = np.random.RandomState(0)
self.mu_data = self.rng.randn(M, N)
self.sqrt_data = self.rng.randn(M, N)
Ksqrt = self.rng.randn(M, M)
self.K_data = squareT(Ksqrt) + 1e-6 * np.eye(M)
self.feed_dict = {
self.mu: self.mu_data,
self.sqrt: self.sqrt_data,
self.K: self.K_data,
}
# the chols are diagonal matrices, with the same entries as the diag representation.
self.chol = tf.stack([tf.diag(self.sqrt[:, i]) for i in range(N)])
self.chol = tf.transpose(self.chol, perm=[1, 2, 0])
评论列表
文章目录