def build_input(self):
# positive
self.raw_sentence= tf.placeholder(tf.float32, shape=[self.batch_size,1000],name='raw_sentence')
self.sentence_emb =self.raw_sentence/(1e-12+tf.norm(self.raw_sentence,ord=2,axis=1,keep_dims=True)) #tf.nn.embedding_lookup(tf.get_variable('word_embedding',[4096,512]),self.raw_sentence)
self.image_feat = tf.placeholder(tf.float32,shape=[self.batch_size,4096], name='image_features')
Bidirectionnet_cluster_tfidf.py 文件源码
python
阅读 15
收藏 0
点赞 0
评论 0
评论列表
文章目录