model.py 文件源码

python
阅读 28 收藏 0 点赞 0 评论 0

项目:DeepVideo 作者: AniketBajpai 项目源码 文件源码
def build_summary(self, name):
        # Distribution of generator activations
        tf.summary.histogram('generator/{}/f_deconv2_outputs'.format(name), self.net['f_deconv2_outputs'])
        tf.summary.histogram('generator/{}/f_deconv3_outputs'.format(name), self.net['f_deconv3_outputs'])
        tf.summary.histogram('generator/{}/f_deconv4_outputs'.format(name), self.net['f_deconv4_outputs'])
        tf.summary.histogram('generator/{}/f_deconv5i_outputs'.format(name), self.net['f_deconv5i_outputs'])
        tf.summary.histogram('generator/{}/f_deconv5m_outputs'.format(name), self.net['f_deconv5m_outputs'])
        tf.summary.histogram('generator/{}/b_deconv2_outputs'.format(name), self.net['b_deconv2_outputs'])
        tf.summary.histogram('generator/{}/b_deconv3_outputs'.format(name), self.net['b_deconv3_outputs'])
        tf.summary.histogram('generator/{}/b_deconv4_outputs'.format(name), self.net['b_deconv4_outputs'])
        tf.summary.histogram('generator/{}/b_deconv5_outputs'.format(name), self.net['b_deconv5_outputs'])

        # Generator weights, biases
        tf.summary.scalar('generator/{}/w2_f'.format(name), tf.norm(self.net['w2_f']))
        tf.summary.scalar('generator/{}/w3_f'.format(name), tf.norm(self.net['w3_f']))
        tf.summary.scalar('generator/{}/w4_f'.format(name), tf.norm(self.net['w4_f']))
        tf.summary.scalar('generator/{}/w5_fi'.format(name), tf.norm(self.net['w5_fi']))
        tf.summary.scalar('generator/{}/w5_fm'.format(name), tf.norm(self.net['w5_fm']))
        tf.summary.scalar('generator/{}/w2_b'.format(name), tf.norm(self.net['w2_b']))
        tf.summary.scalar('generator/{}/w3_b'.format(name), tf.norm(self.net['w3_b']))
        tf.summary.scalar('generator/{}/w4_b'.format(name), tf.norm(self.net['w4_b']))
        tf.summary.scalar('generator/{}/w5_b'.format(name), tf.norm(self.net['w5_b']))

        tf.summary.scalar('generator/{}/b2_f'.format(name), tf.norm(self.net['b2_f']))
        tf.summary.scalar('generator/{}/b3_f'.format(name), tf.norm(self.net['b3_f']))
        tf.summary.scalar('generator/{}/b4_f'.format(name), tf.norm(self.net['b4_f']))
        tf.summary.scalar('generator/{}/b5_fi'.format(name), tf.norm(self.net['b5_fi']))
        tf.summary.scalar('generator/{}/b5_fm'.format(name), tf.norm(self.net['b5_fm']))
        tf.summary.scalar('generator/{}/b2_b'.format(name), tf.norm(self.net['b2_b']))
        tf.summary.scalar('generator/{}/b3_b'.format(name), tf.norm(self.net['b3_b']))
        tf.summary.scalar('generator/{}/b4_b'.format(name), tf.norm(self.net['b4_b']))
        tf.summary.scalar('generator/{}/b5_b'.format(name), tf.norm(self.net['b5_b']))
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号