def pixel_loss(layer, FLAGS):
generated_images, content_images = tf.split(0, 2, layer)
#img_bytes = tf.read_file(FLAGS.mask_file)
#maskimage = tf.image.decode_jpeg(img_bytes)
#maskimage = tf.to_float(maskimage)
#m_mean = tf.reduce_mean(maskimage, axis=(1,2))
#index = tf.where(m_mean < 1.5)
#top_index = index + tf.to_int64(1)
#down_index = index - tf.to_int64(1)
#select = tf.zeros_like(m_mean, dtype=tf.float32)
#values = tf.squeeze(tf.ones_like(index, dtype=tf.float32))
#topvalues = tf.squeeze(tf.ones_like(top_index, dtype=tf.float32))
#downvalues = tf.squeeze(tf.ones_like(down_index, dtype=tf.float32))
#delta = tf.SparseTensor(index, values, [FLAGS.image_size])
#topdelta = tf.SparseTensor(index, topvalues, [FLAGS.image_size])
#downdelta = tf.SparseTensor(index, downvalues, [FLAGS.image_size])
#black_select = select + tf.sparse_tensor_to_dense(delta)
#top_select = select + tf.sparse_tensor_to_dense(topdelta)
#down_select = select + tf.sparse_tensor_to_dense(downdelta)
#black_select = tf.mul(black_select, top_select)
#black_select = tf.mul(black_select, down_select)
#black_select = tf.expand_dims(black_select, -1)
#black_select = tf.matmul(black_select, tf.ones([1, FLAGS.image_size]))
#black_select = tf.expand_dims(black_select, -1)
#generated_images = tf.mul(generated_images, black_select)
#content_images = tf.mul(content_images, black_select)
size = tf.size(generated_images)
pixel_loss = tf.nn.l2_loss(generated_images - content_images) * 2 / tf.to_float(size)
return pixel_loss
评论列表
文章目录