variable_mgr_util.py 文件源码

python
阅读 38 收藏 0 点赞 0 评论 0

项目:benchmarks 作者: tensorflow 项目源码 文件源码
def aggregate_gradients_using_copy(tower_grads, use_mean, check_inf_nan):
  """Calculate the average gradient for each shared variable across all towers.

  Note that this function provides a synchronization point across all towers.

  Args:
    tower_grads: List of lists of (gradient, variable) tuples. The outer list
      is over towers. The inner list is over individual gradients.
    use_mean: if True, mean is taken, else sum of gradients is taken.
    check_inf_nan: check grads for nans and infs.

  Returns:
    The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
      gradient has been averaged across all towers. The variable is chosen from
      the first tower. The has_nan_or_inf indicates the grads has nan or inf.
  """
  agg_grads = []
  has_nan_or_inf_list = []

  for single_grads in zip(*tower_grads):
    grad_and_var, has_nan_or_inf = aggregate_single_gradient_using_copy(
        single_grads, use_mean, check_inf_nan)
    agg_grads.append(grad_and_var)
    has_nan_or_inf_list.append(has_nan_or_inf)

  if check_inf_nan:
    return agg_grads, tf.reduce_any(has_nan_or_inf_list)
  else:
    return agg_grads, None
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号