def __softmax_crossentropy(self, scores, targets):
scores_exp = tf.exp(scores)
scores_sum = tf.maximum(tf.reduce_sum(scores_exp, axis=3), 1e-10)
scores_sum = tf.expand_dims(scores_sum, axis=-1)
scores_normalized = tf.truediv(scores_exp, scores_sum, name="scores_normalized")
scores_normalized = tf.maximum(scores_normalized, 1e-10)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(targets * tf.log(scores_normalized), reduction_indices=[3]))
return cross_entropy
评论列表
文章目录