balanced_positive_negative_sampler.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:tensorflow 作者: luyishisi 项目源码 文件源码
def subsample(self, indicator, batch_size, labels):
    """Returns subsampled minibatch.

    Args:
      indicator: boolean tensor of shape [N] whose True entries can be sampled.
      batch_size: desired batch size.
      labels: boolean tensor of shape [N] denoting positive(=True) and negative
          (=False) examples.

    Returns:
      is_sampled: boolean tensor of shape [N], True for entries which are
          sampled.

    Raises:
      ValueError: if labels and indicator are not 1D boolean tensors.
    """
    if len(indicator.get_shape().as_list()) != 1:
      raise ValueError('indicator must be 1 dimensional, got a tensor of '
                       'shape %s' % indicator.get_shape())
    if len(labels.get_shape().as_list()) != 1:
      raise ValueError('labels must be 1 dimensional, got a tensor of '
                       'shape %s' % labels.get_shape())
    if labels.dtype != tf.bool:
      raise ValueError('labels should be of type bool. Received: %s' %
                       labels.dtype)
    if indicator.dtype != tf.bool:
      raise ValueError('indicator should be of type bool. Received: %s' %
                       indicator.dtype)

    # Only sample from indicated samples
    negative_idx = tf.logical_not(labels)
    positive_idx = tf.logical_and(labels, indicator)
    negative_idx = tf.logical_and(negative_idx, indicator)

    # Sample positive and negative samples separately
    max_num_pos = int(self._positive_fraction * batch_size)
    sampled_pos_idx = self.subsample_indicator(positive_idx, max_num_pos)
    max_num_neg = batch_size - tf.reduce_sum(tf.cast(sampled_pos_idx, tf.int32))
    sampled_neg_idx = self.subsample_indicator(negative_idx, max_num_neg)

    sampled_idx = tf.logical_or(sampled_pos_idx, sampled_neg_idx)
    return sampled_idx
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号