def meta_loss(make_loss):
x, constants = _get_variables(make_loss)
print("Optimizee variables")
print([op.name for op in x])
print("Problem variables")
print([op.name for op in constants])
fx = _make_with_custom_variables(make_loss, x)
log.info(type(fx))
print fx is None
fx_array = tf.TensorArray(tf.float32, 1, clear_after_read=False)
fx_array = fx_array.write(0, fx)
loss = tf.reduce_sum(fx_array.stack(), name="loss")
# problem = simple()
# meta_minimize(problem)
# log.info(type(fx))
# sess = tf.Session()
# sess.run(tf.global_variables_initializer())
# print sess.run(loss)
评论列表
文章目录