def _local_Networks(self,input_dim,x):
with tf.variable_scope('_local_Networks'):
x = tf.reshape(x,[-1,self.height*self.width*self.depth*self.num_channels])
W_fc_loc1 = weight_variable([self.height*self.width*self.depth*self.num_channels, 20])
b_fc_loc1 = bias_variable([20])
W_fc_loc2 = weight_variable([20, self.X_controlP_number*self.Y_controlP_number*self.Z_controlP_number*3])
initial = self.initial.astype('float32')
initial = initial.flatten()
b_fc_loc2 = tf.Variable(initial_value=initial, name='b_fc_loc2')
h_fc_loc1 = tf.nn.tanh(tf.matmul(x, W_fc_loc1) + b_fc_loc1)
h_fc_loc2 = tf.nn.tanh(tf.matmul(h_fc_loc1, W_fc_loc2) + b_fc_loc2)
#temp use
if Debug == True:
x = np.linspace(-1.0,1.0,self.X_controlP_number)
y = np.linspace(-1.0,1.0,self.Y_controlP_number)
z = np.linspace(-1.0,1.0,self.Z_controlP_number)
x_s = tf.tile(x,[self.Y_controlP_number*self.Z_controlP_number],'float64')
y_s = tf.tile(self._repeat(y,self.X_controlP_number,'float64'),[self.Z_controlP_number])
z_s = self._repeat(z,self.X_controlP_number*self.Y_controlP_number,'float64')
h_fc_loc2 = tf.concat([x_s,y_s,z_s],0)
h_fc_loc2 = tf.tile(h_fc_loc2,[self.num_batch])
h_fc_loc2 = tf.reshape(h_fc_loc2,[self.num_batch,-1])
#2*(4*4*4)*3->(2,192)
return h_fc_loc2
Dense_Transformer_Networks_3D.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录