def __init__(self,input_shape,control_points_ratio):
self.num_batch = input_shape[0]
self.depth = input_shape[1]
self.height = input_shape[2]
self.width = input_shape[3]
self.num_channels = input_shape[4]
self.out_height = self.height
self.out_width = self.width
self.out_depth = self.depth
self.X_controlP_number = int(input_shape[3] / \
(control_points_ratio))
self.Y_controlP_number = int(input_shape[2] / \
(control_points_ratio))
self.Z_controlP_number = int(input_shape[1] / \
(control_points_ratio))
init_x = np.linspace(-5,5,self.X_controlP_number)
init_y = np.linspace(-5,5,self.Y_controlP_number)
init_z = np.linspace(-5,5,self.Z_controlP_number)
x_s = np.tile(init_x, [self.Y_controlP_number*self.Z_controlP_number])
y_s = np.tile(np.repeat(init_y,self.X_controlP_number),[self.Z_controlP_number])
z_s = np.repeat(init_z,self.X_controlP_number*self.Y_controlP_number)
self.initial = np.array([x_s,y_s,z_s])
Dense_Transformer_Networks_3D.py 文件源码
python
阅读 33
收藏 0
点赞 0
评论 0
评论列表
文章目录