def train_urnn_for_timestep_idx(self, idx):
print('Initializing and training URNNs for one timestep...')
# CM
tf.reset_default_graph()
self.cm_urnn=TFRNN(
name="cm_urnn",
num_in=1,
num_hidden=128,
num_out=10,
num_target=1,
single_output=False,
rnn_cell=URNNCell,
activation_hidden=None, # modReLU
activation_out=tf.identity,
optimizer=tf.train.RMSPropOptimizer(learning_rate=glob_learning_rate, decay=glob_decay),
loss_function=tf.nn.sparse_softmax_cross_entropy_with_logits)
self.train_network(self.cm_urnn, self.cm_data[idx],
self.cm_batch_size, self.cm_epochs)
# AP
tf.reset_default_graph()
self.ap_urnn=TFRNN(
name="ap_urnn",
num_in=2,
num_hidden=512,
num_out=1,
num_target=1,
single_output=True,
rnn_cell=URNNCell,
activation_hidden=None, # modReLU
activation_out=tf.identity,
optimizer=tf.train.RMSPropOptimizer(learning_rate=glob_learning_rate, decay=glob_decay),
loss_function=tf.squared_difference)
self.train_network(self.ap_urnn, self.ap_data[idx],
self.ap_batch_size, self.ap_epochs)
print('Init and training URNNs for one timestep done.')
评论列表
文章目录