def create_cost_soft_min_aligned_distance(x,y,nx,ny, k = 2.0, gamma = 1.0):
d = create_pair_wise_distances(x, y);
a = create_pair_wise_dots(nx, ny);
a = tf.scalar_mul(-0.5, tf.add(a, -1.0)); # [0,1] 0 = aligned
return tf.reduce_mean(create_aligned_distance(d, a, k = k, gamma = gamma));
#def create_cost_spacing(c, length, normalized = True):
# c_shape = c.get_shape().as_list();
# c1 = tf.slice(c, [1,0], [-1,-1]);
# c2 = tf.slice(c, [0,0], [c_shape[0]-1,-1]);
# d = tf.sqrt(tf.reduce_sum(tf.squared_difference(c1,c2), reduction_indices = 1));
# if normalized:
# return tf.reduce_mean(tf.squared_difference(d, tf.constant(length / (c_shape[0]-1), "float32")));
# else:
# return tf.reduce_mean(tf.squared_difference(d, tf.constant(length, "float32")));
machine_vision_c.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录