datasets.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:InceptionV3_TensorFlow 作者: MasazI 项目源码 文件源码
def test_inputs(self, csv, batch_size, verbose=False):
        print("input csv file path: %s, batch size: %d" % (csv, batch_size))
        filename_queue = tf.train.string_input_producer([csv], shuffle=False)
        reader = tf.TextLineReader()
        _, serialized_example = reader.read(filename_queue)
        filename, label = tf.decode_csv(serialized_example, [["path"], [0]])

        label = tf.cast(label, tf.int32)
        jpg = tf.read_file(filename)
        image = tf.image.decode_jpeg(jpg, channels=3)
        image = tf.cast(image, tf.float32)
        if verbose:
            print "original image shape:"
            print image.get_shape()

        # resize to distort
        dist = tf.image.resize_images(image, (FLAGS.scale_h, FLAGS.scale_w))
        # random crop
        dist = tf.image.resize_image_with_crop_or_pad(dist, FLAGS.input_h, FLAGS.input_w)

        min_fraction_of_examples_in_queue = 0.4
        min_queue_examples = int(FLAGS.num_examples_per_epoch_for_train * min_fraction_of_examples_in_queue)
        print (
        'filling queue with %d train images before starting to train.  This will take a few minutes.' % min_queue_examples)

        return self._generate_image_and_label_batch(dist, label, min_queue_examples, batch_size, shuffle=False)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号