def init_tf_ops_weight(self):
#tf weights of operators
self.H0_weight = tf.Variable(tf.ones([self.sys_para.steps]), trainable=False) #Just a vector of ones needed for the kernel
self.weights_unpacked=[self.H0_weight] #will collect all weights here
self.ops_weight_base = tf.Variable(tf.constant(self.sys_para.ops_weight_base, dtype = tf.float32), dtype=tf.float32,name ="weights_base")
self.ops_weight = tf.sin(self.ops_weight_base,name="weights")
for ii in range (self.sys_para.ops_len):
self.weights_unpacked.append(self.sys_para.ops_max_amp[ii]*self.ops_weight[ii,:])
#print len(self.sys_para.ops_max_amp)
self.H_weights = tf.stack(self.weights_unpacked,name="packed_weights")
print "Operators weight initialized."
tensorflow_state.py 文件源码
python
阅读 32
收藏 0
点赞 0
评论 0
评论列表
文章目录