def exKxz(self, Z, Xmu, Xcov):
"""
It computes the expectation:
<x_t K_{x_t, Z}>_q_{x_t}
:param Z: MxD inducing inputs
:param Xmu: X mean (NxD)
:param Xcov: NxDxD
:return: NxMxD
"""
msg_input_shape = "Currently cannot handle slicing in exKxz."
assert_input_shape = tf.assert_equal(tf.shape(Xmu)[1], self.input_dim, message=msg_input_shape)
assert_cov_shape = tf.assert_equal(tf.shape(Xmu), tf.shape(Xcov)[:2], name="assert_Xmu_Xcov_shape")
with tf.control_dependencies([assert_input_shape, assert_cov_shape]):
Xmu = tf.identity(Xmu)
N = tf.shape(Xmu)[0]
D = tf.shape(Xmu)[1]
lengthscales = self.lengthscales if self.ARD else tf.zeros((D,), dtype=settings.float_type) + self.lengthscales
scalemat = tf.expand_dims(tf.matrix_diag(lengthscales ** 2.0), 0) + Xcov # NxDxD
det = tf.matrix_determinant(
tf.expand_dims(tf.eye(tf.shape(Xmu)[1], dtype=settings.float_type), 0) +
tf.reshape(lengthscales ** -2.0, (1, 1, -1)) * Xcov) # N
vec = tf.expand_dims(tf.transpose(Z), 0) - tf.expand_dims(Xmu, 2) # NxDxM
smIvec = tf.matrix_solve(scalemat, vec) # NxDxM
q = tf.reduce_sum(smIvec * vec, [1]) # NxM
addvec = tf.matmul(smIvec, Xcov, transpose_a=True) + tf.expand_dims(Xmu, 1) # NxMxD
return self.variance * addvec * tf.reshape(det ** -0.5, (N, 1, 1)) * tf.expand_dims(tf.exp(-0.5 * q), 2)
评论列表
文章目录