def _filtering_step(self, current_times, current_values, state, predictions):
"""Update model state based on observations.
Note that we don't do much here aside from computing a loss. In this case
it's easier to update the RNN state in _prediction_step, since that covers
running the RNN both on observations (from this method) and our own
predictions. This distinction can be important for probabilistic models,
where repeatedly predicting without filtering should lead to low-confidence
predictions.
Args:
current_times: A [batch size] integer Tensor.
current_values: A [batch size, self.num_features] floating point Tensor
with new observations.
state: The model's state tuple.
predictions: The output of the previous `_prediction_step`.
Returns:
A tuple of new state and a predictions dictionary updated to include a
loss (note that we could also return other measures of goodness of fit,
although only "loss" will be optimized).
"""
state_from_time, prediction, lstm_state = state
with tf.control_dependencies(
[tf.assert_equal(current_times, state_from_time)]):
transformed_values = self._transform(current_values)
# Use mean squared error across features for the loss.
predictions["loss"] = tf.reduce_mean(
(prediction - transformed_values) ** 2, axis=-1)
# Keep track of the new observation in model state. It won't be run
# through the LSTM until the next _imputation_step.
new_state_tuple = (current_times, transformed_values, lstm_state)
return (new_state_tuple, predictions)
train_lstm.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录