def _sample(self, n_samples):
if self.logits.get_shape().ndims == 2:
logits_flat = self.logits
else:
logits_flat = tf.reshape(self.logits, [-1, self.n_categories])
samples_flat = tf.transpose(tf.multinomial(logits_flat, n_samples))
if self.logits.get_shape().ndims == 2:
samples = samples_flat
else:
shape = tf.concat([[n_samples], self.batch_shape], 0)
samples = tf.reshape(samples_flat, shape)
static_n_samples = n_samples if isinstance(n_samples,
int) else None
samples.set_shape(
tf.TensorShape([static_n_samples]).
concatenate(self.get_batch_shape()))
samples = tf.one_hot(samples, self.n_categories, dtype=self.dtype)
return samples
评论列表
文章目录