def test_migrad():
sess = tf.Session()
x = tf.Variable(np.float64(2), name='x')
sess.run(tf.initialize_variables([x]))
optimizer = MigradOptimizer(session=sess)
# With gradient
results = optimizer.minimize([x], x**2, [2 * x])
assert results.success
# Without gradient
results = optimizer.minimize([x], x**2)
assert results.success
@raises(ValueError)
def test_illegal_parameter_as_variable1():
optimizer.minimize([42], x**2)
test_illegal_parameter_as_variable1()
@raises(ValueError)
def test_illegal_parameter_as_variable2():
optimizer.minimize(42, x**2)
test_illegal_parameter_as_variable2()
评论列表
文章目录