def _clip_gradients_fn(self, grads_and_vars):
"""Clips gradients by global norm."""
gradients, variables = zip(*grads_and_vars)
self._grads_and_vars = grads_and_vars
if self._clip_gradients > 0.0:
clipped_gradients, _ = tf.clip_by_global_norm(
t_list=gradients, clip_norm=self._clip_gradients)
grads_and_vars = list(zip(clipped_gradients, variables))
if self._clip_embed_gradients > 0.0:
clipped_gradients = []
variables = []
for gradient, variable in grads_and_vars:
if "embedding" in variable.name or "Embedding" in variable.name:
tmp = tf.clip_by_norm(t=gradient.values, clip_norm=self._clip_embed_gradients)
gradient = tf.IndexedSlices(tmp, gradient.indices, gradient.dense_shape)
clipped_gradients.append(gradient)
variables.append(variable)
grads_and_vars = list(zip(clipped_gradients, variables))
return grads_and_vars
评论列表
文章目录