def initialize(self):
if self.summarize:
bs = tf.to_float(tf.shape(self.x)[0])
tf.summary.scalar("model/policy_loss", self.pi_loss / bs)
tf.summary.scalar("model/value_loss", self.vf_loss / bs)
tf.summary.scalar("model/entropy", self.entropy / bs)
tf.summary.scalar("model/grad_gnorm", tf.global_norm(self.grads))
tf.summary.scalar("model/var_gnorm", tf.global_norm(self.var_list))
self.summary_op = tf.summary.merge_all()
self.sess = tf.Session(graph=self.g, config=tf.ConfigProto(
intra_op_parallelism_threads=1, inter_op_parallelism_threads=2))
self.variables = ray.experimental.TensorFlowVariables(self.loss,
self.sess)
self.sess.run(tf.global_variables_initializer())
评论列表
文章目录