def loss_fn(W,b,x_data,y_target):
logits = tf.subtract(tf.matmul(x_data, W),b)
norm_term = tf.divide(tf.reduce_sum(tf.multiply(tf.transpose(W),W)),2)
classification_loss = tf.reduce_mean(tf.maximum(0., tf.subtract(FLAGS.delta, tf.multiply(logits, y_target))))
total_loss = tf.add(tf.multiply(FLAGS.C_param,classification_loss), tf.multiply(FLAGS.Reg_param,norm_term))
return total_loss
评论列表
文章目录