def __init__(self, hight, width, batch_size, folder_image, folder_label, format_image = '.jpg' , random = True):
"""
Args:
hight : hight of samples
width : width of samples
batch_size : batch size
folder_image : the folder where the images are
folder_label : the folder where the ground truth are
format_image : format of images (usually jpg)
random : is the queue shuffled (for training) or not (FIFO for test related tasks)
"""
self.hight = hight
self.width = width
self.batch_size = batch_size
self.image = np.array([f for f in os.listdir(folder_image) if format_image in f])
self.f1 = folder_image
self.f2 = folder_label
self.size_epoch = len(self.image)
if random:
self.queue = tf.RandomShuffleQueue(shapes=[(self.hight,self.width,3), (self.hight,self.width), []],dtypes=[tf.float32, tf.float32, tf.string],capacity=16*self.batch_size, min_after_dequeue=8*self.batch_size)
else:
self.queue = tf.FIFOQueue(shapes=[(self.hight,self.width,3), (self.hight,self.width), []],dtypes=[tf.float32, tf.float32, tf.string],capacity=16*self.batch_size)
self.image_pl = tf.placeholder(tf.float32, shape=(batch_size,hight,width,3))
self.label_pl = tf.placeholder(tf.float32, shape=(batch_size,hight,width))
self.name_pl = tf.placeholder(tf.string, shape=(batch_size))
self.enqueue_op = self.queue.enqueue_many([self.image_pl, self.label_pl, self.name_pl])
input.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录