def buildForwardGraph(self, batch_size, discrimivative=False):
"""
:param batch_size: Minibatch Size. Currently unused. Using None.
:param discrimivative: True for discriminative pretraining (Creates a graph with zero hidden layers). Default \
value: False (Creates a graph with specified hidden layers)
"""
with tf.variable_scope('forward_variables', reuse=False):
self.input = tf.placeholder(tf.float32, (None, self.input_dim), 'input_nodes')
self.output = tf.placeholder(tf.float32, (None, self.output_dim), 'output_nodes')
inpt = self.input;
if not discrimivative:
inpt = self.__buildFullGraph__()
self.layers.append(LinearLayer(self.layer_dims[-2], self.layer_dims[-1], inpt,
str(len(self.layer_dims) - 2) + 'layerNet_output'))
else:
self.layers.append(
LinearLayer(self.layer_dims[0], self.layer_dims[-1], inpt, '0layerNet_output'))
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.step_incr = tf.assign_add(self.global_step, 1)
评论列表
文章目录