def model(self, input_text_begin, input_text_end, gene, variation, batch_size,
vocabulary_size=VOCABULARY_SIZE, embeddings_size=EMBEDDINGS_SIZE, output_classes=9):
# embeddings
embeddings = _load_embeddings(vocabulary_size, embeddings_size)
# global step
self.global_step = training_util.get_or_create_global_step()
self.global_step = tf.assign_add(self.global_step, 1)
# model
with tf.control_dependencies([self.global_step]):
with slim.arg_scope(self.text_classification_model.model_arg_scope()):
self.outputs = self.text_classification_model.model(input_text_begin, input_text_end,
gene, variation, output_classes,
embeddings=embeddings,
batch_size=batch_size,
training=False)
# restore only the trainable variables
self.saver = tf.train.Saver(var_list=tf_variables.trainable_variables())
return self.outputs
text_classification_train.py 文件源码
python
阅读 29
收藏 0
点赞 0
评论 0
评论列表
文章目录