def model(self, input_vectors, input_gene, input_variation, output_label, batch_size,
embedding_size=EMBEDDINGS_SIZE,
output_classes=9):
logits, targets = doc2vec_prediction_model(input_vectors, input_gene, input_variation,
output_label, batch_size,
is_training=False, embedding_size=embedding_size,
output_classes=output_classes)
loss = tf.nn.softmax_cross_entropy_with_logits(labels=targets, logits=logits)
self.global_step = training_util.get_or_create_global_step()
global_step_increase = tf.assign_add(self.global_step, 1)
self.accumulated_loss = tf.Variable(0.0, dtype=tf.float32, name='accumulated_loss',
trainable=False)
self.accumulated_loss = tf.assign_add(self.accumulated_loss, tf.reduce_sum(loss))
self.prediction = tf.nn.softmax(logits)
self.metrics = metrics.single_label(self.prediction, targets, moving_average=False)
steps = tf.cast(global_step_increase, dtype=tf.float32)
tf.summary.scalar('loss', self.accumulated_loss / (steps * batch_size))
return None
doc2vec_eval_doc_prediction.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录