model.py 文件源码

python
阅读 34 收藏 0 点赞 0 评论 0

项目:tf-char-cnn-lstm 作者: hejunqing 项目源码 文件源码
def loss_graph(logits, batch_size, num_unroll_steps):
    with tf.variable_scope('Loss'):
        targets = tf.placeholder(tf.int64, [batch_size, num_unroll_steps], name='targets')
        # target_list = [tf.squeeze(x, [1]) for x in tf.split(1, num_unroll_steps, targets)]
        target_list=tf.unpack(targets, axis=1)#hjq

        loss= tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits, target_list), name='loss')
        # reduce_mean to reduce_sum,hjq

    return adict(
        targets=targets,
        loss=loss
    )
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号