def _build_global_context(
net,
is_training=False,
bayesian=False,
dropout_keep_prob=0.8):
with tf.variable_scope('GlobalContext'):
# Reduce feature dimension before LSTM to reduce param count
net = slim.conv2d(net, 1024, 1, padding='VALID', scope='conv_reduce_1x1')
#net = slim.dropout(net, dropout_keep_prob, is_training=bayesian or is_training, scope='Dropout')
rows = tf.unpack(net, axis=1)
net = tf.pack(
[lstm.bidir_lstm(r, 512, scope='row%d' % i) for i, r in enumerate(rows)],
axis=1)
print('Horizontal LSTM', net.get_shape())
cols = tf.unpack(net, axis=2)
net = tf.pack(
[lstm.bidir_lstm(r, 512, scope='col%d' % i) for i, r in enumerate(cols)],
axis=2)
print('Vertical LSTM', net.get_shape())
return net
build_resnet_sdc.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录