color.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:draw-color 作者: kvfrans 项目源码 文件源码
def write_attention(self, hidden_layer):
        with tf.variable_scope("writeW", reuse=self.share_parameters):
            w = dense(hidden_layer, self.n_hidden, self.attention_n*self.attention_n*self.num_colors)

        w = tf.reshape(w, [self.batch_size, self.attention_n, self.attention_n, self.num_colors])
        w_t = tf.transpose(w, perm=[3,0,1,2])
        Fx, Fy, gamma = self.attn_window("write", hidden_layer)

        # color1, color2, color3, color1, color2, color3, etc.
        w_array = tf.reshape(w_t, [self.num_colors * self.batch_size, self.attention_n, self.attention_n])
        Fx_array = tf.concat(0, [Fx, Fx, Fx])
        Fy_array = tf.concat(0, [Fy, Fy, Fy])

        Fyt = tf.transpose(Fy_array, perm=[0,2,1])
        # [vert, attn_n] * [attn_n, attn_n] * [attn_n, horiz]
        wr = tf.batch_matmul(Fyt, tf.batch_matmul(w_array, Fx_array))
        sep_colors = tf.reshape(wr, [self.batch_size, self.num_colors, self.img_size**2])
        wr = tf.reshape(wr, [self.num_colors, self.batch_size, self.img_size, self.img_size])
        wr = tf.transpose(wr, [1,2,3,0])
        wr = tf.reshape(wr, [self.batch_size, self.img_size * self.img_size * self.num_colors])
        return wr * tf.reshape(1.0/gamma, [-1, 1])
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号