def logistic_loss_cond(scores, labels):
# Classification loss as the average of weighed per-score loss
cond = tf.select(tf.equal(labels, tf.zeros(tf.shape(labels))),
tf.zeros(tf.shape(labels)),
tf.nn.sigmoid_cross_entropy_with_logits(logits = scores, labels = labels)
)
cls_loss = tf.reduce_mean(tf.reduce_sum(cond, [1, 2, 3]))
return cls_loss
评论列表
文章目录