metrics.py 文件源码

python
阅读 29 收藏 0 点赞 0 评论 0

项目:tefla 作者: openAGI 项目源码 文件源码
def sequence_accuracy(predictions, targets, rej_char, streaming=False):
    """Computes sequence level accuracy.
    Both input tensors should have the same shape: [batch_size x seq_length].

    Args:
        predictions: predicted character classes.
        targets: ground truth character classes.
        rej_char: the character id used to mark empty element (end of sequence).
        streaming: if True, uses the streaming mean from the slim.metric module.

    Returns:
        a update_ops for execution and value tensor whose value on evaluation
            returns the total sequence accuracy.
    """

    with tf.variable_scope('SequenceAccuracy'):
        predictions.get_shape().assert_is_compatible_with(targets.get_shape())

        targets = tf.to_int32(targets)
        const_rej_char = tf.constant(
            rej_char, shape=targets.get_shape(), dtype=tf.int32)
        include_mask = tf.not_equal(targets, const_rej_char)
        include_predictions = tf.to_int32(
            tf.where(include_mask, predictions, tf.zeros_like(predictions) + rej_char))
        correct_chars = tf.to_float(tf.equal(include_predictions, targets))
        correct_chars_counts = tf.cast(
            tf.reduce_sum(correct_chars, reduction_indices=[1]), dtype=tf.int32)
        target_length = targets.get_shape().dims[1].value
        target_chars_counts = tf.constant(
            target_length, shape=correct_chars_counts.get_shape())
        accuracy_per_example = tf.to_float(
            tf.equal(correct_chars_counts, target_chars_counts))
        if streaming:
            return tf.contrib.metrics.streaming_mean(accuracy_per_example)
        else:
            return tf.reduce_mean(accuracy_per_example)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号