def build_graph(all_readers,
input_reader,
input_data_pattern,
all_eval_data_patterns,
batch_size=256):
original_video_id, original_input, unused_labels_batch, unused_num_frames = (
get_input_evaluation_tensors(
input_reader,
input_data_pattern,
batch_size=batch_size))
video_id_equal_tensors = []
model_input_tensor = None
input_distance_tensors = []
for reader, data_pattern in zip(all_readers, all_eval_data_patterns):
video_id, model_input_raw, labels_batch, unused_num_frames = (
get_input_evaluation_tensors(
reader,
data_pattern,
batch_size=batch_size))
video_id_equal_tensors.append(tf.reduce_sum(tf.cast(tf.not_equal(original_video_id, video_id), dtype=tf.float32)))
if model_input_tensor is None:
model_input_tensor = model_input_raw
input_distance_tensors.append(tf.reduce_mean(tf.reduce_sum(tf.square(model_input_tensor - model_input_raw), axis=1)))
video_id_equal_tensor = tf.stack(video_id_equal_tensors)
input_distance_tensor = tf.stack(input_distance_tensors)
tf.add_to_collection("video_id_equal", video_id_equal_tensor)
tf.add_to_collection("input_distance", input_distance_tensor)
评论列表
文章目录