def add_embedding(self, embeddings):
#embed=np.load('glove{0}_uniform.npy'.format(self.emb_dim))
if embeddings is not None:
initializer = embeddings
else:
initializer = tf.random_uniform_initializer(-0.05,0.05)
with tf.variable_scope("Embed",regularizer=None):
embedding=tf.Variable(initial_value = initializer, trainable=True, name = 'embedding', dtype='float32')
ix=tf.to_int32(tf.not_equal(self.input,-1))*self.input
emb_tree=tf.nn.embedding_lookup(embedding,ix)
emb_tree=emb_tree*(tf.expand_dims(
tf.to_float(tf.not_equal(self.input,-1)),2))
return emb_tree
评论列表
文章目录