def testEmbeddingColumnWithMultipleInitializersFails(self):
hashed_sparse = tf.contrib.layers.sparse_column_with_hash_bucket("wire", 10)
wire_tensor = tf.SparseTensor(values=["omar", "stringer", "marlo"],
indices=[[0, 0], [1, 0], [1, 1]],
shape=[2, 2])
features = {"wire": wire_tensor}
embedded_sparse = tf.contrib.layers.embedding_column(
hashed_sparse,
10,
initializer=tf.truncated_normal_initializer(mean=42,
stddev=1337))
embedded_sparse_alternate = tf.contrib.layers.embedding_column(
hashed_sparse,
10,
initializer=tf.truncated_normal_initializer(mean=1337,
stddev=42))
# Makes sure that trying to use different initializers with the same
# embedding column explicitly fails.
with self.test_session():
with self.assertRaisesRegexp(
ValueError,
"Duplicate feature column key found for column: wire_embedding"):
tf.contrib.layers.input_from_feature_columns(
features, [embedded_sparse, embedded_sparse_alternate])
评论列表
文章目录