def testLinearModel(self):
"""Tests that loss goes down with training."""
def input_fn():
return {
'age': tf.constant([1]),
'language': tf.SparseTensor(values=['english'],
indices=[[0, 0]],
shape=[1, 1])
}, tf.constant([[1]])
language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100)
age = tf.contrib.layers.real_valued_column('age')
target_column = layers.multi_class_target(n_classes=2)
classifier = LinearEstimator(target_column,
feature_columns=[age, language])
classifier.fit(input_fn=input_fn, steps=1000)
loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss']
classifier.fit(input_fn=input_fn, steps=2000)
loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss']
self.assertLess(loss2, loss1)
self.assertLess(loss2, 0.01)
评论列表
文章目录