rnn_cell_modern.py 文件源码

python
阅读 28 收藏 0 点赞 0 评论 0

项目:tensorflow_with_latest_papers 作者: NickShahML 项目源码 文件源码
def _inner_function(self, inputs, past_hidden_state, activation=tf.nn.tanh):
    """second order function as described equation 11 in delta rnn paper
    The main goal is to produce z_t of this function
    """
    V_x_d = linear(past_hidden_state, self._num_units, True)

    # We make this a private variable to be reused in the _outer_function
    self._W_x_inputs = linear(inputs, self._num_units, True)

    alpha = tf.get_variable("alpha", [self._num_units], dtype=tf.float32, initializer=tf.ones_initializer)

    beta_one = tf.get_variable("beta_one", [self._num_units], dtype=tf.float32, initializer=tf.ones_initializer)

    beta_two = tf.get_variable("beta_two", [self._num_units], dtype=tf.float32, initializer=tf.ones_initializer)

    z_t_bias = tf.get_variable("z_t_bias", [self._num_units], dtype=tf.float32, initializer=tf.zeros_initializer)

    # Second Order Cell Calculations
    d_1_t = alpha * V_x_d * self._W_x_inputs
    d_2_t = beta_one * V_x_d + beta_two * self._W_x_inputs

    z_t = activation(d_1_t + d_2_t + z_t_bias)

    return z_t
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号