def _sample(self, n_samples):
if self.logits.get_shape().ndims == 2:
logits_flat = self.logits
else:
logits_flat = tf.reshape(self.logits, [-1, self.n_categories])
samples_flat = tf.transpose(tf.multinomial(logits_flat, n_samples))
samples_flat = tf.cast(samples_flat, self.dtype)
if self.logits.get_shape().ndims == 2:
return samples_flat
shape = tf.concat([[n_samples], self.batch_shape], 0)
samples = tf.reshape(samples_flat, shape)
static_n_samples = n_samples if isinstance(n_samples, int) else None
samples.set_shape(
tf.TensorShape([static_n_samples]).concatenate(
self.get_batch_shape()))
return samples
评论列表
文章目录