def _compute_rnn_outputs(self):
reversed_inputs = tf.reverse(self.inputs, [False, True, False])
reversed_resets = tf.reverse(self.resets, [False, True, False])
with tf.variable_scope('fw'):
self._fw_lstm = LSTM(self.inputs, self.resets, self.training,
self.num_layers, self.hidden_layer_size,
self.init_scale, self.dropout_keep_prob)
with tf.variable_scope('rv'):
self._rv_lstm = LSTM(reversed_inputs, reversed_resets,
self.training, self.num_layers,
self.hidden_layer_size, self.init_scale,
self.dropout_keep_prob)
fw_outputs = self._fw_lstm.outputs
rv_outputs = tf.reverse(self._rv_lstm.outputs, [False, True, False])
outputs = tf.concat(2, [fw_outputs, rv_outputs])
return outputs
models.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录