def train(self):
print("Total number of parameters: %d" % (self.hyp.shape[0]))
X_tf = tf.placeholder(tf.float64)
y_tf = tf.placeholder(tf.float64)
hyp_tf = tf.Variable(self.hyp, dtype=tf.float64)
train = self.likelihood(hyp_tf, X_tf, y_tf)
init = tf.global_variables_initializer()
self.sess.run(init)
start_time = timeit.default_timer()
for i in range(1,self.max_iter+1):
# Fetch minibatch
X_batch, y_batch = fetch_minibatch(self.X,self.y,self.N_batch)
self.sess.run(train, {X_tf:X_batch, y_tf:y_batch})
if i % self.monitor_likelihood == 0:
elapsed = timeit.default_timer() - start_time
nlml = self.sess.run(self.nlml)
print('Iteration: %d, NLML: %.2f, Time: %.2f' % (i, nlml, elapsed))
start_time = timeit.default_timer()
self.hyp = self.sess.run(hyp_tf)
parametric_GP.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录