def _createBatchAndStandardize(self,imageDataArray,batchSize):
i = 0
standardizedImagesBatch = None
standardizedImages = None
totalNumImages = imageDataArray.shape[0]
print "Total Number of images:"+str(totalNumImages)
while i<totalNumImages:
minIndx = i
maxIndx = min(imageDataArray.shape[0],i+batchSize)
print str(i)+"/"+str(imageDataArray.shape[0])
i = i + batchSize
print i
standardizedImagesBatch = tf.map_fn(lambda img:tf.image.per_image_standardization(img), imageDataArray[minIndx:maxIndx], dtype=tf.float32)
if standardizedImages is None:
standardizedImages = standardizedImagesBatch.eval()
else:
standardizedImages = np.vstack((standardizedImages,standardizedImagesBatch.eval()))
return standardizedImages
genericDataSetLoader.py 文件源码
python
阅读 64
收藏 0
点赞 0
评论 0
评论列表
文章目录