def _map(self, example_serialized):
def _parse(line):
input = np.float32(line)
# a simple equation of the input to generate the output
output = input + 10 + input * 2
# generate 2 inputs and 1 output
return input, np.float32(input * 3), np.float32(output)
input_1, input_2, output = tf.py_func(func=_parse,
inp=[example_serialized],
Tout=[tf.float32, tf.float32, tf.float32],
stateful=True)
# set shapes for data
input_1 = tf.reshape(input_1, [1])
input_2 = tf.reshape(input_2, [1])
output = tf.reshape(output, [1])
# we could perform this operation here or in the graph
input = tf.concat([input_1, input_2], axis=0)
return input, output
distributed_training_test.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录