def init_memory(self, batch_size):
"""
Returns the memory state for step 0. Used in DNC for the argument to tf.while_loop
:return:
"""
read_weightings = tf.fill([batch_size, self.memory_size, self.num_read_heads], Memory.epsilon)
write_weighting = tf.fill([batch_size, self.memory_size], Memory.epsilon, name="Write_weighting")
precedence_weighting = tf.zeros([batch_size, self.memory_size], name="Precedence_weighting")
m = tf.fill([batch_size, self.memory_size, self.word_size], Memory.epsilon) # initial memory matrix
usage_vector = tf.zeros([batch_size, self.memory_size], name="Usage_vector")
link_matrix = tf.zeros([batch_size, self.memory_size, self.memory_size])
read_vectors = tf.fill([batch_size, self.num_read_heads, self.word_size], Memory.epsilon)
return [read_weightings, write_weighting, usage_vector, precedence_weighting, m, link_matrix, read_vectors]
评论列表
文章目录