def initialize(self):
"""Initialize the decoder.
Args:
name: Name scope for any created operations.
Returns:
`(finished, start_inputs, initial_state)`.
"""
start_inputs = self._embedding_fn(self._tiled_start_tokens)
print('start_inputs', start_inputs)
finished = tf.zeros((self.batch_size, self._beam_width), dtype=tf.bool)
self._initial_num_available_beams = tf.ones((self._batch_size,), dtype=tf.int32)
self._full_num_available_beams = tf.fill((self._batch_size,), self._beam_width)
with tf.name_scope('first_beam_mask'):
self._first_beam_mask = self._make_beam_mask(self._initial_num_available_beams)
with tf.name_scope('full_beam_mask'):
self._full_beam_mask = self._make_beam_mask(self._full_num_available_beams)
with tf.name_scope('minus_inifinity_scores'):
self._minus_inifinity_scores = tf.fill((self.batch_size, self._beam_width, self._output_size), -1e+8)
self._batch_size_range = tf.range(self.batch_size)
initial_state = BeamSearchOptimizationDecoderState(
cell_state=self._tiled_initial_cell_state,
previous_logits=tf.zeros([self.batch_size, self._beam_width, self._output_size], dtype=tf.float32),
previous_score=tf.zeros([self.batch_size, self._beam_width], dtype=tf.float32),
# During the first time step we only consider the initial beam
num_available_beams=self._initial_num_available_beams,
gold_beam_id=tf.zeros([self.batch_size], dtype=tf.int32),
finished=finished)
return (finished, start_inputs, initial_state)
beam_aligner.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录