def read_data(prefix, labels_dic, mixing, files_from_cl):
image_list = sorted(map(lambda x: os.path.join(prefix, x),
filter(lambda x: x.endswith('JPEG'), files_from_cl)))
prefix2 = []
for file_i in image_list:
tmp = file_i.split(prefix+'/')[1].split("_")[0]
prefix2.append(tmp)
prefix2 = np.array(prefix2)
labels_list = np.array([mixing[labels_dic[i]] for i in prefix2])
assert(len(image_list) == len(labels_list))
images = tf.convert_to_tensor(image_list, dtype=tf.string)
labels = tf.convert_to_tensor(labels_list, dtype=tf.int32)
input_queue = tf.train.slice_input_producer([images, labels], shuffle=True, capacity=2000)
image_file_content = tf.read_file(input_queue[0])
label = input_queue[1]
image = tf.image.resize_images(tf.image.decode_jpeg(image_file_content, channels=3), [256, 256])
image = tf.random_crop(image, [224, 224, 3])
image = tf.image.random_flip_left_right(image)
return image, label
评论列表
文章目录