def monitored_queue(*tensors,
capacity,
metric_name="items_in_queue",
return_queue=False):
queue = tf.FIFOQueue(capacity, dtypes(*tensors))
collections.add_metric(queue.size(), metric_name)
add_queue_runner(queue, [queue.enqueue(tensors)])
if return_queue:
return queue
results = queue.dequeue()
for tensor, result \
in zip(tensors, results if isinstance(results, list) else [results]):
result.set_shape(tensor.get_shape())
return results
评论列表
文章目录