def validation_inputs():
fps, labels = _load_validation_labelmap()
filepaths = tf.constant(fps)
labels = tf.constant(labels, dtype=tf.int32)
filename_queue = tf.FIFOQueue(len(fps), [tf.string, tf.int32], name='validation_filename_queue')
enqueue_op = filename_queue.enqueue_many([filepaths, labels])
qr = tf.train.QueueRunner(filename_queue, [enqueue_op])
tf.train.add_queue_runner(qr)
example_queue = tf.FIFOQueue(len(filepaths), [tf.float32, tf.int32], name='validation_example_queue')
enqueue_op_ex = example_queue.enqueue(_read_and_preprocess_image_for_validation(filename_queue))
qr_ex = tf.train.QueueRunner(example_queue, [enqueue_op_ex] * FLAGS.num_consuming_threads)
tf.train.add_queue_runner(qr_ex)
image_10crop, label = example_queue.dequeue()
# do not one-hot-encode label here
return image_10crop, label
评论列表
文章目录