inputs.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:various_residual_networks 作者: yuhui-lin 项目源码 文件源码
def _generate_image_and_label_batch(image, label, min_queue_examples,
                                    batch_size, shuffle, smr_name):
    """Construct a queued batch of images and labels.
    Args:
        image: 3-D Tensor of [height, width, 3] of type.float32.
        label: 1-D Tensor of type.int32
        min_queue_examples: int32, minimum number of samples to retain
        in the queue that provides of batches of examples.
        batch_size: Number of images per batch.
        shuffle: boolean indicating whether to use a shuffling queue.
    Returns:
        images: Images. 4D tensor of [batch_size, height, width, 3] size.
        labels: Labels. 1D tensor of [batch_size] size.
    """
    # Create a queue that shuffles the examples, and then
    # read 'batch_size' images + labels from the example queue.
    num_preprocess_threads = 16
    if shuffle:
        images, label_batch = tf.train.shuffle_batch(
            [image, label],
            batch_size=batch_size,
            num_threads=num_preprocess_threads,
            capacity=min_queue_examples + 3 * batch_size,
            min_after_dequeue=min_queue_examples)
    else:
        images, label_batch = tf.train.batch(
            [image, label],
            batch_size=batch_size,
            num_threads=num_preprocess_threads,
            capacity=min_queue_examples + 3 * batch_size)

    # Display the training images in the visualizer.
    tf.image_summary(smr_name, images, max_images=FLAGS.max_images)

    return images, tf.reshape(label_batch, [batch_size])
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号