def zap_data(FLAGS, shuffle):
files = glob(FLAGS.file_pattern)
filename_queue = tf.train.string_input_producer(
files,
shuffle=shuffle,
num_epochs=None if shuffle else 1)
image = read_image(filename_queue, shuffle)
# Mini batch
num_preprocess_threads = 1 if FLAGS.debug else 4
min_queue_examples = 100 if FLAGS.debug else 10000
if shuffle:
images = tf.train.shuffle_batch(
image,
batch_size=FLAGS.batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * FLAGS.batch_size,
min_after_dequeue=min_queue_examples)
else:
images = tf.train.batch(
image,
FLAGS.batch_size,
allow_smaller_final_batch=True)
# tf.image_summary('images', images, max_images=8)
return dict(batch=images, size=len(files))
评论列表
文章目录