def run(self):
"""Run training."""
# Create logging directory if not exists.
if not os.path.isdir(self._train_log_dir):
os.makedirs(self._train_log_dir)
# Load data and compute loss function
self._initialize()
# Visualize input images in Tensorboard.
self._summary_ops.append(tf.image_summary("Image_Train", self._observations, max_images=5))
# Initialize optimizer.
optimizer = tf.train.AdadeltaOptimizer(self._config.learning_rate)
train_op = slim.learning.create_train_op(self._loss, optimizer)
# Use `slim.learning.train` to manage training.
slim.learning.train(train_op=train_op,
logdir=self._train_log_dir,
graph=self._graph,
number_of_steps=self._config.train_steps,
summary_op=tf.merge_summary(self._summary_ops),
save_summaries_secs=self._config.save_summaries_secs,
save_interval_secs=self._config.save_interval_secs)
评论列表
文章目录