facenet.py 文件源码

python
阅读 29 收藏 0 点赞 0 评论 0

项目:DP_for_FaceNet 作者: guchinoma 项目源码 文件源码
def triplet_loss(anchor, positive, negative, alpha):
    """Calculate the triplet loss according to the FaceNet paper

    Args:
      anchor: the embeddings for the anchor images.
      positive: the embeddings for the positive images.
      negative: the embeddings for the negative images.

    Returns:
      the triplet loss according to the FaceNet paper as a float tensor.
    """
    with tf.variable_scope('triplet_loss'):
        pos_dist = tf.reduce_sum(tf.square(tf.sub(anchor, positive)), 1)  # Summing over distances in each batch
        neg_dist = tf.reduce_sum(tf.square(tf.sub(anchor, negative)), 1)

        basic_loss = tf.add(tf.sub(pos_dist,neg_dist), alpha)
        loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0)

    return loss
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号