unet.py 文件源码

python
阅读 31 收藏 0 点赞 0 评论 0

项目:lung-cancer-detector 作者: YichenGong 项目源码 文件源码
def _get_optimizer(self, training_iters, global_step):
        if self.optimizer == "momentum":
            learning_rate = self.opt_kwargs.pop("learning_rate", 0.2)
            decay_rate = self.opt_kwargs.pop("decay_rate", 0.95)

            self.learning_rate_node = tf.train.exponential_decay(learning_rate=learning_rate, 
                                                        global_step=global_step, 
                                                        decay_steps=training_iters,  
                                                        decay_rate=decay_rate, 
                                                        staircase=True)

            optimizer = tf.train.MomentumOptimizer(learning_rate=self.learning_rate_node, momentum=0.9,
                                                   **self.opt_kwargs).minimize(self.net.cost, 
                                                                                global_step=global_step)
            # optimizer = tf.train.MomentumOptimizer(learning_rate=self.learning_rate_node, momentum=0.9,
            #                                        **self.opt_kwargs)
            # gvs = optimizer.compute_gradients(self.net.cost)
            # # [print(grad) for grad, var in gvs]
            # tf.Print(self.net.cost,self.net.cost)
            # capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gvs]
            # train_op = optimizer.apply_gradients(capped_gvs, global_step=global_step)
        elif self.optimizer == "adam":
            learning_rate = self.opt_kwargs.pop("learning_rate", 0.001)
            self.learning_rate_node = tf.Variable(learning_rate)

            optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_node,  
                                               **self.opt_kwargs).minimize(self.net.cost,
                                                                     global_step=global_step)

        return optimizer
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号